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SUMMARY 
To simulate filling flow in injection moulding for viscoelastic fluids, a numerical method, based on a finite 
element method and a finite volume method, has been developed for incompressible isothermal viscoelastic 
flow with moving free surfaces. The advantages of this method are, first, good applicability to arbitrarily 
shaped mould geometries and, second, accurate treatment for boundary conditions on the free surface. 
Typical filling flows are simulated, namely filling flow into a 1 :4 expansion cavity with and without an 
obstacle. Numerical results predict the position of weld lines and air-traps. The method also indicates the 
effects of elongational flow on molecular orientation. 
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1. INTRODUCTION 

To date, many numerical simulation methods have been developed and applied to fluid problems 
with free surfaces. The difficulties with such moving free surface problems lie in the treatment 
of the kinematics and boundary conditions on the free surface. Here we focus on moving free 
surfaces such as those in the filling process in injection moulding. In terms of numerical 
simulation of the filling process, several numerical codes are already available: their objectives 
are mainly to simulate the filling of relatively thin mould cavities. Therefore all of them make 
use of the Hele-Shaw approximation and ignore flow in the direction of the thickness of the 
cavities. Sometimes these methods are called 2.5D simulations, because the mould shape, which 
is intrinsically 3D, comprises 2D shells. We are, however, more interested in the details of free 
surface movement in relatively thick cavities than in the whole filling process of complex, if 
effectively zero-thickness, cavities. For a thick mould product the transverse fluid movement 
often determines its structural properties as well as the productivity of the moulding process. 

There are several ways of treating moving free surfaces. They are well reviewed in Reference 
1. Here we categorize them from a point of view considering geometrical applicability and 
accuracy of boundary conditions. The first category comprises methods moving the mesh system 
itself in a Lagrangian sense following the movement of the fluid (see e.g. Reference 2, p. 532). 
The concept originates in large-deformation problems in numerical structural analysis. This 
type of method is mainly used in a finite element formulation because it retains a desirable 
feature of the finite element methods: boundary conditions for the free surface are automatically 
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satisfied when the free surface is identically located on the element boundary. Another advantage 
is the fact that the advective term does not need to comprise a material derivative in a Lagrangian 
formulation. On the other hand, contact of fluid against cavity walls needs special consideration, 
because mesh systems do not fit the considered whole spatial domain in advance and fluids do 
not ‘know’ the position of the wall. 

This method involves an essential difficulty for application to fluid dynamics: deformation of 
fluids is far larger than that of elastic materials and, in the course of time, the moving mesh 
system suffers a huge distortion. The only remedy may be re-meshing the distorted mesh system. 
Two re-meshing schemes were developed for flows involving the convective term by Wang and 
M c L ~ ~ . ~  The first scheme is interpolation of field variables from a distorted mesh to a reformed 
mesh, though interpolation always includes a truncation error. The second is to incorporate the 
speed of the moving mesh into the convective term. In this method the mesh movement follows 
some rule so that the deformed mesh is no longer distorted. Debbaut er d4 developed a method 
which makes use of the second kind of re-meshing to apply to the simulation of blow moulding. 
In their method the mesh system does not move in a Lagrangian manner but along spines 
radially directed to the mould walls. The mould shape of blow moulding is, however, simple 
compared with that of injection moulding, at least in the sense that the geometrical topology 
hardly changes during flow. 

In the second category the mesh system is fixed in the considered spatial domain and free 
surfaces are treated somehow in border meshes between filled and empty meshes. Methods in 
this category have been favoured for application in more complex geometries such as injection 
moulding. The first type of this category is to solve a first-order transport equation for a 
volume fraction (in other words, a pseudo-concentration or a fill factor) of fluid in an element 
or a control volume for determining the position of the free surface. Thompson’ developed a 
method of this type and applied it to filling flow in injection moulding, deformation during 
compression, convection of a two-layer flow and so on. In his method a low-viscosity artificial 
material is put in the part where a real fluid is not filled. Hence special treatment is necessary 
to avoid the influence of the artificial material on the flow of the real fluid when the artificial 
material is trapped in the real fluid or at the corner of the flow channel. A numerical solver for 
the first-order transport equation always requires artificial diffusion to stabilize the calculation. 
This sometimes makes the position of the free surface obscure, because the calculated gradient 
of the filling factor, which should be very steep at  the free surface, is smeared out. Nassehi6 
employed the streamline upwind Petrov-Galerkin method of Brooks and Hughes’ to avoid at 
least diffusion in the direction normal to the streamline. 

The second type of this category is to calculate the volume fraction by using a control 
volume: the velocity field is used to compute the volume of fluid entering or leaving a control 
volume. The pioneer work was done by Tadmor et a1.* for Hele-Shaw flows. Their finite 
difference simulation, named the FAN (flow analysis network) method, does not determine the 
exact position of the free surface but identifies which finite difference cells contain the free surface. 
Wang el ~ 1 . ~  developed a finite element simulation method based on the idea of FAN. They 
employed three-node triangular elements for calculation of the flow and polygonal control 
volumes surrounding vertex nodes for computation of the volume fraction. The boundary 
condition for the free surface is approximated by setting the pressure to zero at nodes whose 
control volume is partially filled. Methods of this type are easy to write as computer codes and 
economical to run, so that many similar methods have been developed and applied to complex 
flow fields such as injection moulding. Osswald and Tucker” developed a similar technique to 
apply economically to compression moulding. It must be noted that the boundary condition 
for the free surface of this type of method is inaccurate; however, it seems that this type is 



FRINGE ELEMENT GENERATION METHOD 557 

practical enough for 2.5D filling simulation using the Hele-Shaw approximation in thin mould 
parts. 

The M A C  (marker and cell) method, originally developed by Harlow and Welch,’ ’ has already 
been applied to the simulation of polymer flows with a free surface by several researchers 
such as Kamal et a1.12 and Gogos et al.I3 This M A C  method is often used in a finite 
difference formulation, because finite elements do not have sufficient flexibility in shape 
functions. It is quite useful that the mesh system covers the whole region of a cavity where fluids 
may reach and that the position of the free surface is determined explicitly. The only disadvantage 
of this method is that boundary conditions for the free surface are normally satisfied only at 
discrete points, not along the whole surface, even if treated accurately in a mathematical 
sense. 

Osswald and Tucker14 developed a mould-filling simulation method for Hele-Shaw flows in 
flat uniform-thickness parts of otherwise arbitrary shape. Their method made use of a local 
mesh-stretching technique whereby elements including the free surface are stretched to fit their 
faces to the free surface at every time step. This method can be applied to complex geometries, 
because the mesh system is fixed in the whole domain in advance. Another advantage of this 
method is its accurate treatment of boundary conditions for the free surface, because mesh faces 
coincide with the free surface. Despite the complex procedure to deform the mesh to fit to the 
free surface, their simulation results for the transient position of the free surface are in good 
agreement with experiments. 

In order also to take both the above advantages, here a new simulation method for moving 
free surface problems, named the fringe element generation method, has been developed. The 
original mesh system is fitted to the whole domain. New fringe elements are generated at the 
fringe of the free surface temporarily at each time step and so boundary conditions for the free 
surface are accurately satisfied, because element faces coincide with the edge of the fluid. The 
essential difference of the fringe element generation method from local re-meshindstretching 
methods is that it never deforms the mesh system but instead generates new elements inside the 
original mesh. The fringe element generation method is incorporated into the method of Sato 
and Richardson,” which has been used successfully to simulate a number of viscoelastic 
benchmark problems. 

2. FRINGE ELEMENT GENERATION METHOD 

Fringe elements 

At first, original elements are generated in the whole domain of a mould cavity. Each element 
has a volume fraction of fluid and each node has a flag that indicates whether it is inside the 
fluid or not. If all nodes have flags valued 1, the volume fraction is 1: this element is filled with 
fluid. If all nodes have flags valued 0, the element is empty and the volume fraction is 0. A free 
surface exists in elements whose volume fractions are less than 1 and greater than 0. When the 
free surface penetrates the original mesh system, the intersection points between the free surface 
and element faces become new nodes for the fringe elements. Figure 1 shows a schematic view 
of the fringe elements, denoted by the symbol ‘x’. The bold line is the free surface and dashed lines 
are the original mesh system. In the fringe element generation method the free surface is 
approximated by a piecewise linear segment in each element and such a segment becomes a face 
of the fringe elements. Figure 2 shows three types of fringe elements generated in an original 
element: (a) a linear triangular element, (b) a bilinear quadrilateral element and (c) three linear 



558 T. SAT0 AND S. M. RICHARDSON 

Figure 1. Fringe elements in original mesh system 

(a) (b) (4 
Figure 2. Three types of generation of fringe elements in an original element 

triangular elements. Each box denotes an original element, bold lines denote the free surface 
and the area filled with fluid is shown hatched in Figure 2. 

Tracing the free surface 

From the nodal flag information the position of the free surface is roughly known, because 
the free surface always penetrates the original element through two faces that have different 
nodal flags, 0 and 1, at the edge of each of them. To determine the precise position of the 
intersection between the free surface and element faces, the volume fraction of fluid in each 
original element is used during tracing of the free surface. Tracing of the free surface starts at a 
contact point between the free surface and the wall, the position of which is known by a method 
described later. If one edge of the linear free surface segment is known, the other edge is simply 
computed by using the volume fraction. After starting with the initial position on the wall, this 
process is continued and the free surface is traced element-by-element until the edge of the free 
surface reaches a boundary of the domain of calculation. Therefore the free surface is always 
piecewise continuous. Moreover, the free surfaces can divide into several parts and they can 
never cross each other. 

When the free surface has a small radius of curvature in an element, it is hard to approximate 
it with a linear segment. In such an element an edge of the segment calculated by the volume 
fraction cannot lie in a proper place. This fictitious placing of the free surface sometimes induces 
a geometrical oscillation of the free surface, even if the velocity field is completely oscillation-free. 
The best remedy may be to use a very fine mesh system where a piecewise linear approximation 
for the free surface is available. Unfortunately, this is quite difficult, because one cannot always 
predict in advance the region where the radii of curvature of the free surface are small during 
filling. Since this oscillation is a totally geometrical artefact, appropriate filtering or smoothing 
retains physical reality and never spoils the accuracy of resolution of the position of the free 
surface. When a zigzag mode across three elements is found, more realistic edges of the free 
surface segments are generated on the original mesh system by filtering. Temporarily, the volume 
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Figure 3. Advance of free surface 

fraction in such an original element is not exactly consistent with the area of fringe element(s) 
in it; however, the correct volume fraction is always stored in computer memory and used 
correctly at the next time step to preserve the mass balance. 

Occasionally, fringe elements which are too small are generated depending on the position of 
intersection points between the free surface and the original mesh system, which possibly 
deteriorates the speed of computation because of a CFL (Courant-Friedrichs-Lewy) stability 
condition.16 In order to maintain high computational performance, the fringe element generation 
method provides a remedy for this unfavourable feature. In the case where a fringe node is 
located very close to a node of the original mesh-say the length of the element face of a fringe 
element is less than 5% of that of original elements-such a fringe node is merged with the 
original one and the fringe elements are squeezed so as to disappear. The volume fraction of 
such an element is, however, also stored in computer memory, so that the fringe element 
generation method never compromises the mass balance. 

Kinematics 

free surface in the fringe element generation method as 
Forward Euler differencing with respect to time gives the kinematics of the transiently moving 

F + = F + AM, (1) 

where F is the position of the free surface at time step n and v" is the velocity vector of the 
moving free surface calculated at position F. To trace the free surface at each time step, it is 
necessary to calculate the increase or decrease in the volume fraction in each element and to 
determine the wet/dry flag on each node. In Figure 3 dashed lines denote the original mesh 
system, the solid line is the current position of the free surface and the dotted line is that after 
moving a time increment At. Two nodes A and B of the fringe elements are moved to C and D 
respectively by equation (1) using velocities calculated on A and B at time step n. In quadrilateral 
ABCD each area that becomes part of the original elements 1, 2, 3 and 4 is respectively added 
to the volume fraction of the corresponding original element. In Figure 3 wet nodes (inside the 
fluid) are shown by closed circles and dry ones (outside the fluid) are shown by open squares. If 
quadrilateral ABCD includes nodes that used to be dry, they are changed to be wet, as shown 
by open circles. 
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Figure 4. Contact between free surface and wall 

Contact point between free surface and wall 

On the wall a no-slip condition is applied and therefore the free surface rolls onto the wall 
satisfying this condition. Figure 4 is a schematic explanation of this process in the present method. 
The hatched part on the left-hand side is the wall and dashed lines denote the original mesh. 
The current position of the free surface is shown by a solid line and that of the next time step 
by a dotted line. Node A is located on the contact point between the free surface and the wall, 
which does not move because of the no-slip condition. If node B, the node next to A, attaches 
to or tries to penetrate the wall when it moves with its prescribed velocity, it sticks to that 
position on the wall and becomes the contact node at the next time step, which is shown by 
node B .  In this way the free surface advances smoothly along the wall satisfying the no-slip 
condition. 

Extrapolation of velocity and extra stress 

At the beginning of each time step of computation, new wet nodes do not yet have velocities. 
Here extrapolation is used for obtaining velocities at such nodes. Before the generation of new 
fringe elements, the average of the velocities on A and B represents the velocity of quadrilateral 
ABCD in Figure 3. This velocity value is integrated into original element 3 and then a volume 
average determines a new elemental value of velocity in element 3. After the generation of new 
fringe elements, since the velocity is defined on each node and not in each element, volume- 
averaged elemental values of the velocity are distributed into new fringe nodes by a Galerkin 
method, which means zeroth-order extrapolation at the edge of the computational domain. 
Although this is a lowest-order extrapolation, the velocity so calculated is not used directly for 
moving the free surface: it is modified by the result of the pressure calculation before being used 
for that purpose. However, attention should be paid to whether the simulation results are 
sensitive to mesh refinement. Linear extrapolation is also provided as an option in the present 
method. In the viscoelastic case the elastic stress, which advects in accordance with a constitutive 
equation, in each new fringe element is also obtained similarly: it is transported from the current 
fringe elements into the original elements, where the stress is volume averaged, and then 
distributed into new fringe elements. 

3. FINITE ELEMENT/FINITE VOLUME FORMULATIONS FOR VISCOELASTIC 
FLOW 

The discretization formulations of the present method are the same as those of Sato and 
Richardson.” The inelastic part of their formulations is similar to the method of Tanahashi et 
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d.,' ' which was successfully applied to high-Reynolds-number problems for Newtonian fluid 
flow. For viscoelastic fluid flow Sat0 and Richardson' incorporated an FCT (flux-corrected 
transport) algorithm to achieve TVD (total variation diminishing) in a finite volume solver for 
the viscoelastic constitutive equation. 

The Galerkin method gives the discrete momentum equation 

M"%P+ ' = MuB$ + At( - E"@U? - qai j  + Sl), 

aij = -p"+'d.. 11 + T .  11' 

(2) 

where 

(3) 

and 

(4) 

Here @ is a bilinear weight function, ui is the velocity vector, (zij is the total stress tensor, p is 
the pressure, Tij is the deviatoric stress tensor, 6, is the unit tensor, At  is the time increment of 
first-order Euler time differencing, p is the constant density, I/ is the area of an element, r is the 
boundary of an element and nj  is a unit-vector component normal to the element boundary. 
Since aij is approximated piecewise-constantly in each element, it is integrated out in equation 
(2). The fourth equation of (4) gives the boundary conditions. As often done in the time- 
dependent FEM, the mass matrix WB is lumped for the purpose of speed of computation. 

Integration of a Poisson equation for pressure in each element gives 

This is a finite volume formulation of the Poisson equation. A converged solution p from an 
iterative solver of equation ( 5 )  is used as a right-hand side in equation (2) and a resulting solution 
< + I  automatically satisfies a solenoidal condition at time step n + 1. The second term on the 
left-hand side in equation ( 5 )  requires the first derivatives of elemental values on element faces 
r. To calculate the gradient of an elemental value W, subelements are introduced following 
Ikegawa,'* where W is concentrated on the centroid of the element. In Figure 5 we focus on 
element face 12 and subelement C1S2, which is divided into two triangles C1S and CS2. The 
gradient of Win C1S is given by 

The gradient of W in CS2 is obtained similarly. A weighted average of gradients in C1S and 
CS2 gives the gradient of Win subelement ClS2. To obtain nodal values d from the elemental 
value W, bilinear weight functions are applied: 

WdV = @"W"dK J: 1" (7) 



562 T. SAT0 AND S. M. RICHARDSON 

Figure 5. Elements C, E, N, W and S and subelements CIS and CS2 

As a viscoelastic model an Oldroyd-B model is chosen: 

T j  = 2q, Di j  + T ~ ~ ,  

where qs is the Newtonian solvent viscosity and T~~ is the extra stress tensor. The Oldroyd-B 
model is not appropriate for the description of real material flow because it has an infinite 
elongational viscosity at a finite extension rate and no shear-thinning property. However, this 
model has been a benchmark viscoelastic model for checking the robustness of numerical 
methods for the past decade. For the Oldroyd-B model the extra stress is obtained by solving 
a constitutive equation for the upper-convected Maxwell fluid. In other words, the upper- 
convected Maxwell fluid is a special case (qs = 0) of the Oldroyd-B fluid. Applying the 
Gauss-Green theorem to the constitutive equation gives 

where 

At 
1 + BAt 

A=- a. 

Here is the relaxation time and qp is the polymer viscosity. The stress is integrated out because 
it is approximated piecewise-constantly in each element. When 8 = 1, equation (9) has first-order 
accuracy with respect to time; when 8 = 4, it has second-order accuracy. The second term on 
the right-hand side of equation (9) is the advective term, which includes the stress values on 
element faces. We apply an FCT concept, originally developed by Boris and Book,Ig to our 
method to achieve TVD. A TVD scheme guarantees no spurious oscillations, which otherwise 
appear near the steep gradients of field variables, e.g. near a sharp corner. In the present method 
donor-cell-type upwinding is a lower-order TVD scheme and second-order central differencing 
is a higher-order one. A flux limiter due to Zalesak" for multiple dimensions is adopted in the 
present method for antidiffusion. The FCT algorithm gives sufficient artificial diffusion to smooth 
unphysical extrema locally only where it is necessary. 



FRlNGE ELEMENT GENERATION METHOD 563 

4. BOUNDARY AND INITIAL CONDITIONS 

Boundary conditions that specify velocity components are applied to the wall where we assume 
no slip and to the inlet where the flow rate is specified. At the centre plane the flow is assumed 
to be symmetrical. The present time-dependent finite volume method needs boundary values of 
the stress at all element faces including the inflow either in a Dirichlet or a Neumann sense. 
A homogeneous Neumann condition (zero gradient) is adopted at  the inflow boundary provided 
that it is far from flow disturbances. 

One of the advantages of using a finite element method is its simple treatment of boundary 
conditions on the free surface. On the free surface we can assume 

nijnj = oi. 

Here surface tension is ignored. By equation (1 l), the fourth equation of (4) explicitly vanishes. 
The fringe element generation method retains this advantage because it coincides with the 
boundaries of the fringe elements. 

In the present method a Poisson equation for pressure is solved so that the solenoidal 
condition (divergence-free velocity field) is satisfied. Equation (1 1) gives a sufficient condition 
for determining the pressure on the free surface. Here only its component normal to the free 
surface is considered and a Dirichlet condition is given on the free surface to the finite volume 
formulation of the Poisson equation for pressure, (5): 

p = Tijninj = (211. Dij  + rij)ninj. 

At an inflow boundary, a wall boundary or a symmetric boundary a Newmann condition on 
pressure is set and thus the free surface is the only boundary to give reference values for the 
pressure. To obtain pressure values at nodes on the free surface, extra stress components are 
distributed from the elements on to the nodes by equation (7). By using these nodal values of 
the stress, equation (12) gives a nodal value of the pressure. In Figure 6 a normal vector at node 
B is regarded as an average of those of AB and BD. 

Subelements for the present pressure solver along the free surface are shown in Figure 6. 
Dashed lines denote the original mesh and bold solid lines denote faces of the fringe and original 
elements. Fine solid lines are faces of the subelements, the nodes of which are the original nodes 
including the fringe nodes and centre points of the elements shown by open circles. At the free 

Figure 6. Subelements along free surface 
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surface the subelements are triangular like ACB. The constant gradients inside subelement ACB, 
which are assumed to be the first derivatives on free surface segment AB, are calculated by 

where S is the area of triangle ACB. 
Initial conditions should be compatible with the inflow boundary condition to make the 

simulation physically meaningful: here the fully developed flow condition is used as the initial 
condition for both velocity and stress. 

5. CASE STUDIES FOR FILLING FLOW IN INJECTION MOULDING 

Filling flow into I : 4 expansion 

First, the present method is applied to filling flow into a 1 :4 expansion cavity. Here annular 
mould cavities like those shown in Figure 7 are considered and only the section enclosed by 
dashed lines is the subject of simulation. In Figure 7 a quarter part is cut to show the inside 
and the cavity channel is denoted by hatching. Since the radius of the annular cavity is quite 
large compared with its thickness, flow into such a cavity can be regarded as two-dimensional 
without any azimuthal (angular) variation. Engineering interest lies in the motion of the free 
surface to predict the possible position of air-traps. Vent-holes should be provided on the mould 
surface in accordance with this prediction. Another interest lies in the molecular orientation 
distribution. 

Figure 8 shows a schematic domain of computation for filling flow into a 1 :4 expansion 
mould cavity including the initial position of the melt front. Based on the assumption of 

u 
Figure 7. Annular mould cavities 
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Figure 8. Schematic of computational domain of 1 :4  expansion cavity 

symmetry, the computational domain is half of the cavity. The size of the half-cavity is 3h x 4h 
(length x height), where h is the half-thickness of the sprue and the gate. The computational 
domain also has a sprue, the length of which is h. Since the shape of the fully developed free 
surface is unknown, a straight line perpendicular to the gate wall is used. This involves 
incompatibility with the initial condition for the stress and causes failure of the present simulation 
especially for high We. This is described at the end of this subsection. 

Non-dimensional numbers which determine Oldroyd-B fluid flows are the Reynolds number 
Re, the Weissenberg number We and the ratio a between the solvent viscosity and the total 
viscosity : 

Figures 9(a) and 9(b) show advancing melt fronts of Oldroyd-B fluids during filling for We = 1 
and 2 respectively at Re = 10 and a = 0.5. The non-dimensional numbers are based on the mean 
velocity U inside the sprue and the half-thickness h of the sprue part. Solid lines give the shape 
of the free surfaces plotted at every 10% of the total volume of the mould cavity and dotted 
lines show the original mesh system initially generated inside the whole mould cavity. The 
original elements are of size 0.2h x 0.2h. In Figure 9(a) the melt front advances straight to the 
front wall and then changes course towards the upper wall after hitting the front wall. As a 
result the region very close to the side of the gate is filled at the last stage of filling for Re = 10. 
On the other hand, in Figure 9(b) the main flow passes the centre of the cavity after hitting the 
front wall. In this case the last part filled with fluid is the top left corner. Viscoelastic fluids have 
a normal stress difference due to shear along the wall when they flow through a narrow sprue. 
The normal stress difference results in so-called extrudate swell, the phenomenon whereby the 
radius of extrudates is larger than that of the die immediately after the flow exits the gate. This 
effect, which is larger in a more elastic case, is seen in the comparison between Figures 9(a) and 
9(b). 

Figure lqa) shows contour plots of the principal stress difference for an Oldroyd-B fluid with 
Re = 10, We = 2 and a = 0-5 at the moment of 90% filling of the whole cavity volume. The 
principal stress difference AT is defined by 

AT = J[(Txx - TyY)’ 4T:yl, (15) 
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4 ,  / I 

0 1 2 3 4 

Figure 9. Advancing melt front plotted at every 10% of cavity volume during filling for Oldroyd-B fluids with Re = 10, 
a = 0.5 and (a) We = 1, (b) We = 2 

where zXx and T~~ are the normal stress components and rXy is the shear stress component. Since 
amorphous polymers have entropic elasticity, the principal stress difference is a quantitative 
measure of molecular orientation. Figure 10(a) therefore indicates the degree of molecular 
orientation at the moment of 90% filling. Contour lines of the principal stress difference give 
two high parts along the gate wall and near the front wall. The former may be due to high shear 
at the wall of a narrow channel. Since the highest value is not given on the front wall for the 
latter case, it is not due to shear at the wall. The high values of AT near the front wall may be 
due to elongation on the symmetric centreline, where the flow bifurcates to two symmetric parts 
of the cavity. Figure l q b )  is a schematic view of the molecular orientation, in which the length 
of each segment corresponds to the value of the principal stress difference and the direction 
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Figure 10. (a) Contour plots of principal stress difference and (b) schematic view of molecular orientation at instance 
of 90% filling for Oldroyd-B fluid with Re = I ,  We = 2 and u = 0 5  

corresponds to that of the maximum principal stress, which is given by the angle JI measured 
from the x-axis: 

Figures ll(a) and ll(b) show an advancing melt front and a contour plot of the principal 
stress difference respectively for an Oldroyd-B fluid with Re = 10, We = 2 and a = 05, which 
is the same flow as those of Figures 9(b) and 10(a). Here a finer mesh (0.143h x 0.143h) is used. 
The shape of the advancing melt front during filling in Figure 1 l(a) is almost the same as that 
of Figure 9(b), while the finer mesh can represent smaller radii of curvature of the free surface. 
In comparison between Figures lqa )  and ll(b), the coarse mesh seems to have numerical 
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0 1 2 3 4 

Figure 1 1 .  (a) Advancing melt front plotted at every 10% of cavity volume during filling and (b) contour plots of principal 
stress difference at instance of 90% filling for Oldroyd-B fluid with Re = 10, We = 2 and a = 0 5  in finer mesh 

diffusion in the stress field because of its poorer spatial resolution: Figure 1 l(b) shows steeper 
gradients of the stress. However, the highest values in each contour island and the positions of 
these values are :sentially the same. These facts may give validity to the present simulation in 
the sense that there is no mesh dependence. 

The upper limit on We is found to be a little above 2 for the Oldroyd-B fluid in this flow. 
Although the computation does not diverge, results show unphysically large values of stress and 
pressure along the gate wall near the inflow. The problem may be partially due to incompatibility 
between the initial condition for the stress and the initial position of the melt front. On the free 
surface, pressure is given in a Dirichlet sense by equation (12). If the initial position of the free 
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surface is a line parallel to the thickness direction, a normal unit vector n to the free surface has 
components 

n, = 1, ny = 0. (17) 

Therefore the pressure on the free surface is given by 

The initial condition is set as a fully developed flow; hence u, is constant in the x-direction and 
T,, has a parabolic profile in the y-direction. Consequently we get 

18114, U 
h4 Y2. p = t,, = (19) 

However, the fully developed condition based on a Poiseuille flow has a constant pressure in 
the y-direction with a constant pressure gradient in the x-direction. This contradiction is due 
to the wrong initial position of the free surface. In a real flow, if the flow is cut perpendicular 
to the flow direction, the free surface may immediately change its shape because of the residual 
stress, which is exactly the extra elastic stress at the moment when it gets cut. This incompatibility 
between the initial stress and the initial position of the free surface already exists even for 
small-We cases. However, it seems that there is little significant effect when A in equation (19) 
is small. 

A better initial condition should be the use of a plausible initial position of the free surface 
such as the result of fountain flow simulation. Otherwise, it may be sensible to provide a long 
sprue, in which a fully developed fountain flow is expected, and to set zero stress as the initial 
condition and zero-gradient stress as the inflow boundary condition. Mesh refinement may also 
be effective in increasing We; however, such an effect is limited to the slight increase as studied 
in Figure 11. 

Filling flow into 1 : 4 expansion with an obstacle 

Second, the method is applied to flow around an elliptic obstacle in the 1 : 4 expansion cavity. 
The schematic computational domain is shown in Figure 12. Here engineering interest lies in 
the position of a so-called weld line in addition to the distribution of molecular orientation or 

Figure 12. Schematic of computational domain of 1 :4 expansion cavity with obstacle 
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Figure 13. 

0 1 2 3 4 

orientation at 

the position of air-traps. When two advancing melt fronts meet together behind an obstacle 
inside a mould cavity, the interface between them is called a weld line, which is sometimes clearly 
observed on the surface of moulded products even if the two free surfaces are formed of the 
same material. The problem is not only the bad appearance of the products but also the fracture 
weakness along the weld line. Therefore it is important to control the position of the weld line 
by design of a mould system, including the position of gates. In general, the weld line is a line 
in the flow-width plane observed on the surface of thin moulded products, though Figure 12 
shows a cut section in the flow-thickness direction of an annular/long-straight mould cavity. 
However, it is also a weld line in the sense that fracture weakness is anticipated there. 

Figure 13(a) shows an advancing melt front at every 10% of cavity volume and at the instant 
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Figure 14. (a) Advancing melt front at every 10% of cavity volume and (b) schematic view of molecular orientation at 
instant of 95% filling for Oldroyd-B fluid with Re = 1, We = 1 and u = 0.5 

of 98% filling and Figure 13(b) a schematic view of the molecular orientation based on the 
principal stress difference at the moment of 95% filling for an Oldroyd-B fluid with Re = 10, 
We = 1 and a = 0.5. In Figure 13(a) the melt front entering the cavity is divided into two parts 
when it reaches the obstacle, which meet together after passing the obstacle at the top of the 
cavity. In Figure 13(b) high orientation is observed along walls including those of the obstacle. 
Because of the existence of the obstacle, the effective flow channel in the cavity becomes narrow 
and hence shear along the wall seems to dominate the orientation of molecules. 

Figures 1qa) and 14(b) show an advancing melt front and the molecular orientation 
respectively for an Oldroyd-B fluid with Re = 10, We = 2 and a = 0-5. The position of the 
advancing melt front is almost the same in Figure 13(a) as in Figure 14(a); consequently the 
position of the weld line is almost the same. In Figure 14(b) the molecular orientation trend 



572 T. SAT0 AND S. M. RICHARDSON 

0 1 2 3 4 

0 1 2 3 4 

Figure 15. (a) Advancing melt front at every 10% of cavity volume and (b) schematic view of molecular orientation at 
instant of 95% filling for upper-convected Maxwell fluid with Re = 10 and We = 1 

observed in Figure 13(b) becomes much clearer. At the same time, on the symmetric centre near 
the front (right) wall, high orientation resulting from elongation in the bifurcating (symmetric) 
ffow is observed. 

Figures 15(a) and 15(b) show an advancing melt front and the molecular orientation 
respectively for an upper-convected Maxwell fluid with Re = 10 and We = 1. The melt front 
moves similarly to the Oldroyd-B cases. A slight change is seen at the position of the weld line 
in Figure 15(a): this time it is located a little closer to the gate. Since the fluid does not have a 
retardation time, stresses respond to flow deformation instantaneously. Unlike the Oldroyd-B 
fluids, high orientation resulting from elongation in a radial flow (perpendicular to the flow) is 
seen just under the obstacle in Figure 15(b). 
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6. CONCLUSIONS 

A new method for moving free surfaces has been developed and incorporated into a flow 
simulation method for viscoelastic fluids. This method, which is called the fringe element 
generation method, has two main advantages. The first is good applicability to arbitrarily shaped 
mould cavities: original elements are provided in the whole cavity from the beginning and hence 
there is no need to make the flow perceive the position of complex mould walls. The second is 
accurate treatment of boundary conditions for the free surface in the finite element formulation 
for the momentum equation: fringe elements are generated along the free surface temporarily 
at every time step and the free surface always coincides with their faces. 

The present numerical simulation method has been carried out for viscoelastic flow problems 
including a moving free surface, namely filling flow into 1 :4  expansion both with and without 
an obstacle. The solutions exhibit no mesh dependence. The method predicts the position of 
weld lines, the position of air-traps, the values of residual stress and the degree and direction of 
molecular orientation. Moreover, the simulations suggest that the effects of elongational flow 
are significant on molecular orientation. 

Unfortunately, no experiments using real materials have been done to compare with the 
present simulations. It is also very difficult to find experimental results similar to the present 
simulation conditions in the literature, partly because injection moulding with thin parts has 
been the centre of industrial interest so far. 
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